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1096 Lisboa Codex Portugal 

(Received March 21, 1984) 

The effect of gravity on the stability of equilibrium of a fluid interface in contact with a rough and 
heterogeneous solid surface is studied for a system with cylindrical symmetry. The equilibrium 
contact angles measured in relation to the mean solid surface are then evaluated and contact 
angle hysteresis is discussed. The general effect of gravity is to decrease contact angle hysteresis. 
The effect depends on the size (width) of the fluid interface. As the size of the fluid interface de- 
creases, it may happen that the advancing contact angle becomes smaller than the receding angle 
(contact angle inversion). There is also an effect of inclination of the solid surface on hysteresis. 
The hysteresis behaviour is predicted in detail in limiting cases and by considering a solid surface 
with sinusoidal grooves. 

1 INTRODUCTION 

Equilibrium contact angles are central quantities in the characterization of 
the wettability of solids and in the determination of their surface tensions 
and surface energies. However, contact angle measurement' is made compli- 
cated by the fact that different angles are usually determined, depending on 
whether the equilibrium configuration is reached by advancement of the 
line of contact solid-liquid-vapour over the dry solid or by retractment of 
that line from the wetted solid surface. This contact angle hysteresis is 
attributed to the roughness and heterogeneity of actual solid surfaces. 
It occurs even though the local contact angle is completely determined, 
through Young's equation, by the local surface tensions of the solid-vapour 
and solid-liquid  interface^.^, ' 

Several theoretical approaches to the problem of contact angle hysteresis 
have been ~ n d e r t a k e n , ~ . ~ ,  '-', using simple model systems with either cylin- 
drical or axial symmetry. In only one of these studies' has gravity been in- 
cluded, in an analysis of a system with cylindrical symmetry, in which the 
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I36 M. A. FORTES 

liquid surface was of infinite radius of curvature at the apex and contacted 
a vertical saw-tooth solid surface. 

The general outcome of these studies is that the triple line (solid-liquid- 
vapour contact line) has to make jumps as it is forced to move between equil- 
ibrium positions on the solid surface. The jumps occur from different 
positions in advancing and receding, leading to measured contact angles 
in advancing that are larger than in receding. This is experimentally observed. 
The triple line can only occupy a range of stable positions on a rough solid 
surface, separated by regions where equilibrium is ~ns t ab le .~ .  ', For axial 
and cylindrical symmetry (no gravity) it has been shown4 that the stable 
regions are such that the triple line advances on them as the volume of liquid 
increases. For large symmetric liquid drops (no gravity), the critical points, 
at the frontiers between stable and unstable regions, coincide with the in- 
flection points of the solid surface propile, stability occuring in the protruding 
regions between inflection points. This then leads to an hysteresis of the 
contact angles measured in relation to the mean solid surface. A similar effect 
occurs if the surface contains regions of different contact angles (hetero- 
geneous surface). 

It is experimentally observed (e.g. 10) that both the advancing and re- 
ceding angles for a drop on a horizontal plate, decrease as the size of the drop 
decreases. Good and Koo" suggested that this effect may be related to the 
convolutions in the surface of the drop that develop in the vicinity of the 
solid due to the contorted nature of the triple line on a random rough or 
heterogeneous surface. Objections to this explanation have been recently 
raised by the present a ~ t h o r . ~  

This paper contains a detailed analysis of the stability of a fluid interface 
in contact with a rough and heterogeneous surface, under gravity. The in- 
clusion of gravity implies that only the simplest systems can be analysed, 
because the thermodynamic treatment requires that the shape of the fluid 
interface is known in closed form. We shall study a system with cylindrical 
symmetry and with a vertical plane of symmetry, which is analogous to the 
one analysed by Eick et aL8 We consider, however, a general shape of the 
solid surface and an arbitrary curvature of the liquid surface. The system 
is limited by two vertical walls, perpendicular to the symmetry axis, a distance 
Lo apart. The contact angle with these walls is assumed to be 90°, so that the 
cylindrical symmetry is preserved. The following analysis can be regarded 
as a generalization of the one previously undertaken for a gravity free 
~ y s t e m . ~  

Predictions on the measured contact angles are made, with special 
emphasis on the effect of gravity, solid surface inclination and dimensions 
of the liquid surface. These predictions suggest that contact angles are 
even more dependent on the particularities of the system in which they are 
measured than generally admitted. 
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CONTACT ANGLE HYSTERESIS I37 

2 VARIATION OF VOLUME WITH POSITION OF TRIPLE LINE 

2a Rough surfaces 

The model system to be analysed is schematically shown in Figure la-c. 
To describe the solid surface we take a z-axis vertical upwards with origin 
at the point where the solid surface intersects the vertical plane of symmetry 
and a x-axis in the horizontal plane. Because of symmetry we may take x > 0. 

Two types of solid surfaces will be considered. In type I surfaces, the profile 
is defined by z(x), implying that there is only one value of z for each x. Type 
II surfaces are defined by x(z). Examples are shown in Figure la-c. Other 
types of profiles will not be considered. The slope angle at any point, relative 
to the horizontal, is A, given by 

where a dot means derivation with respect to the independent variable. 
Since we require that A be a continuous function of position, it will be taken 
in the interval ( -  90", 90") for type I profiles and in the interval (0, 180") for 
type II profiles. All calculations will be made simultaneously for the two 
types; only in the final discussion of stability a distinction has to be made 
between the two types of profiles. 

To describe the fluid interface, Z(x), we take a Z-axis with origin at  the 
apex and directed downwards. The radius of curvature at the apex is r,,: it is 
positive if the fluid interface is concave downwards (as in Figures la, lb) 

I c )  I d )  

FIGURE 1 Cross-sections of the systems to be analysed: (a)-(c) sessile menisci; (d) pendent 
meniscus. The solid surface can be of two types: type I is examplified in (a) and (c), and type I1 
in (b). The curvature of the fluid interface is positive in (a) and (b) and negative in (c). 
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138 M. A. FORTES 

and negative in the other case (Figure lc). We shall refer specially to the 
system in Figure la, although the equations that we write are applicable 
in all cases. The slope angle, 4, of the fluid interface relative to the horizontal 
plane is given by 

dZ 
dX 

t g 4  = - 

It is positive in the case of Figure 1 a, b and negative in Figure lc. Only liquid 
surfaces for which 4 varies in the interval ( -  180", 180") will be considered. 

We now introduce the capillary constant 

112 

a =  (&) (3) 

where y is the fluid interfacial tension, Ap(> 0) is the density difference 
between the two fluids, and g is the acceleration due to gravity. We define 
adimensional quantities in terms of a, which are denoted by a capital letter: 

Here 2u is the volume of liquid per unit length of the system. 

( e g  8) leads to 
A first integration of Laplace's equation for the fluid interface profile 

d 1 -  
- 7 = c o s 4 = - + z  

dZ RO 

and a second integration to 

Combining with Eq. 2 we obtain 

( 5 )  

All quantities referring to the triple line will be indicated by a subscript 
1 e g ,  Z , ,  Z , ,  X,, Al, 41. We have 

dZ, = tgAl-dX1 (8) 

z, z: 
cos 4, = 1 - - - -. 

Ro 2 
(9) 
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CONTACT ANGLE HYSTERESIS 139 

The last equation gives 

Differentiating [S] we obtain 

where 
dkl = kdX,  

p1 being the radius of curvature of the solid surface at the triple line. 
The reduced volume per unit length is 

V = Joz’ X d Z  + V, 

where V, is the volume of the meniscus per unit length, that is, the volume 
between the fluid interface profile and a horizontal plane through the triple 
line. Equilibrium of forces acting on the meniscus, or integration of Eq. 5, 
leads to 

V, + s in4 ,  - X ,  - + Z, = 0. Go 1 
Differentiating [13] and [14] we obtain 

We admit presently that the solid surface is homogeneous. The local 
contact angle, O , ,  is then independent of position, and related to the inter- 
facial tensions by Young’s equation 

(16) Ysv - Y S L  cos 8, = --. 
Y 

Since 

we have 

Integration of [7] leads to 

X, = s,”’ ’ dZ 
(1 - f 2 ) ” 2  

(19) 
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140 M. A. FORTES 

which, upon differentiation, gives 

dR 
dX1 = ctg 41 dZl  + I 4  

RO 
where 

Finally, we substitute dZ1 and d 4 ,  from Eqs 8, 12 and 18, and eliminate 
dZl  and dRo/Ri using Eqs. 10 and 21, to obtain [ lS]  in the form 

(22) 

If the meniscus has the concavity upwards, 41, Ro, Z, and I are all negative. 
This is the general equation giving the variation of the triple line position as 
the volume changes, under equilibrium conditions (equilibrium shape of 
the fluid interface and Young’s contact angle). For type I1 solid surfaces 
we shall require 

dV dV 
__ = - ctg A,. 
dZl dX,  

An equation similar to [22] can be obtained for pendent menisci (Figure Id) 

1 R; - k(Z’ sin d1 - cos bl) 
- - k c o s + l +  R,’ -Z ,  + X ,  

l ’ ( R i 1  - 2,) + z, ctg $ 1  

dV 
dX 
_ -  

where Ro,  2, and 41 are positive, and 

z, z z z2 
(I  - g2)3’2  Ro 2 I‘  = s, dZ; g(Z) = 1 - - + -. 

In this case, the z-axis is directed downwards, so that a given solid surface 
has the same equation z(x)  if it is turned upside-down. 

2b Heterogeneous surfaces 

If the surface is heterogeneous but cylindrical symmetry is kept, 8, = e,(X). 
The derivation of the previous sub-section can be maintained, except for 
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CONTACT ANGLE HYSTERESIS 

Eq. 18, which is replaced by 

That is, Eqs 22 and 24 apply with k replaced by k - dQ,/dX, : 

141 

(24) 

3 STABILITY OF EQUILIBRIUM 

In this section we show that stability of equilibrium is simply related to the 
way the position of the triple line changes as the volume I/ changes: the 
stable positions are those for which the triple line advances as the volume 
increases. This will be shown by calculating the second derivative of the 
Helmholtz energy A (per unit length), at  constant volume, and relating it to 
dV/dX, calculated at constant contact angle 8,. The calculations will be 
done for R, 3 co, assuming 0, to be independent of position. The inclusion 
of a variable 8, is not difficult, but consideration of an arbitrary R, leads 
to very complicated equations. Analogous calculations have been under- 
taken, for any Ro < 0, for the no-gravity case.4 

We write the following expression for the reduced volume (cf. Eq. 13, 14) 

T/ = J,~-"X dZ + X,Z, - sin 4, (Ro -+ co) (28) 

where 

H = Z ,  + Zi (29) 
is the height of the meniscus relative to the solid (Figure 1). 

The Helmholtz energy per unit length of the system, 2A, is the sum of the 
interfacial energies with the potential energy of the two fluids, for which we 
take the value zero at z = 0. We obtain, using Young's equation (cf. Ref. 7), 

(30) A = 7s - YSSL cos 8 + Apg z dv I 
where 2s and 2sSL are the lengths of the cross-sections of the fluid and solid- 
liquid interfaces, respectively, and do is an area element of the cross-section 
of the liquid (or volume element per unit length). Note that no term related to 
the free energy of the walls limiting the length of the system has to be included, 
since the contact angle with these walls is 90" and therefore no change in A 
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I42 M. A. FORTES 

occurs when the wetted area in them varies. We define 

and calculate the various terms in this equation. For the first term we write 

S 
- = X, + Joxl [(l + + i?2)1/2 - 11 dX 
a 

and, since 

we obtain 

S 
- = x, + 2(1 - 
a 

For ssL we have 

(34) 

The reduced potential energy, jv Z dV, is the sum of the potential energy up 
to the level of the triple line: 

Joz' X Z  dZ 

with that of the meniscus. The latter can, in turn, be decomposed in the rec- 
tangular area of sides X ,  and Z,, from the level Z,, up to H, with a contri- 
bution 

X,Z,(. - +), (37) 

and (with a minus sign) the area between the level H and the fluid interface, 
with a contribution 

- Joxl Z(, - :) d X  = H sin 4, + 1 - c0s3 - - 2 1 - cos- 4 (  921) ( t) 
(38) 

with the integral evaluated from Eq. 33. 
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CONTACT ANGLE HYSTERESIS 143 

Inserting [34]-[38] in Eq. 31 we obtain 

A* = X, - cos 8, (1 + k2)l/* dZ + XZ dZ + X,Zl(.Zl + sin$) 

We shall now derive an expression for dV/dX,. Differentiating [28] yields 

dV = XI dH + Z1 dX1 - cos 41 d41. (40) 

From Eqs 8,29 and 33 we obtain 

4 dH = tg I t  dX, + cos 2 d41 2 
and combining with [40], 

since the other terms are infinitesimal of second order. Under constant 
contact angle, 8, = A, + 4,, and with [ll], [18], we obtain from [42] 

This equation could of course be obtained directly from Eq. 22, by setting 
R, -+ 00, X ,  -, cc and noting that I + a3 and Z ,  = 2 sin 4J2. 

We require a different expression for dV Solving [41] for dX, and inser- 
ting in [40] we get, noting that Z,  = 2 sin (4,/2) and dN is infinitesimal 
of second order, 

dV = X, dH - (sin$, crg A, + cos#,)d#,. (44) 

We now turn to the Helmholtz energy, A*. A first differentiation of Eq. 
39 gives - 

ctg A, - cos 8, cosec A, + XIZ, + 2 sin 
2 

1 -Hcos$ ,  d4,  

- sin cP1 dH. (45) 
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Introducing (cf. Eq. 41) 

M. A. FORTES 

in Eq. 45, and simplifying, neglecting infinitesimal terms in dH, the following 
result is obtained 

41 4 - ctg Al  cos - + cos 0, cosec A, cos 
2 2 

1 41 ctg ,I1 + sin 41 cos- - H cos d1 dd1  2 

+ X I  k1 + 2 s i n g )  dH. (47) 

At constant volume, X dH can be taken from Eq. 44 and we finally get 

dA* 41 41 41 

9 1 2 2 2 
__ = -ctg ,I1 cos ~ + cos 0, cosec Al cos - + sin sin - ctg A, 

(48) 
41 + sin 41 cos -.  
2 

At this stage, we may check that equilibrium occurs for ,I1 + 41 = 0,, 
the contact angle condition. In fact, if this condition is introduced in Eq. 48, 
we find dA*ld$, = 0, noting that 

(49) 
4 4 4 

C O S ~ C O S - +  s in$sin-=cos- .  
2 2 2 

The second derivative of A* is, from Eq. 48, 

1 41 ___ = - - cos 0, sin - cosec A] d2A* 
d4?  2 2 

41 I ‘ + cos c j l  sin - + -sin d1 cos - 

41 1 4 dA1 + C O S ~ ~ C ~ S -  - -cos4 ,  s i n 2  + cosec’l, ~ 

2 2  2 d 4  1 

41 41 - cos 0, cos - cos ,I1 + cos - - sin 41 sin - 

2 2  

2 2 
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CONTACT ANGLE HYSTERESIS I45 

Imposing d I‘ = 0 (Eq. 42), and combining with Eq. 11, we obtain an equation 
for d11/dq51. Inserting this in [ S O ]  and simplifying yields 

41 1 41 cos 8, sin - + - cos A1 sin - - = cosec’ 1, 
d4: 2 2  2 

dZA* 

41 1 . + cos ,I1 cos + 1  sin - + - sin 
2 2  

Note that the contact angle condition has not been introduced yet. If we 
now set 0, = 1, + 41, it is easy to show, using simple trigonometric identities, 
including Eq. 49, that the two terms in curved brackets in Eq. 51 are equal. 
Simplification of the second of such terms leads to (sin 8, sin A1 sin 4,/2), 
so that we obtain the flnal result 

ctg 11 - k cos - d’A* 41 . COSA,  
= cos - sin 0, 

d 4  I 2 sin’ A1 

For type I solid surfaces, cos1, > 0; comparing with Eq. 43, we may 
write 

dV - = B -  ( B > 0 )  
d@; dX1 

d’A* 
(53) 

where B is always positive. If the profile is of type 11, we have, from Eqs 23 
and 43 

1 dV 41 - __ = 1 - kctgA,cos--. 
Xl dZ, 2 

Since now sin A,  > 0, we may write 

(54) 

where B is always positive. 
We recall that dZA*/d4; is calculated at constant volume and taken for 

L l  + q51 = 8,, while dV/dX, and dV/dZ, are calculated for A1 + = Oc. 
Equations 53 and 55 then show that equilibrium is unstable when the position 
of the triple line is such that the volume decreases as this line advances. 
Where the line advances as the volume increases, equilibrium is stable. 
The conditions for stable equilibrium are therefore 

dV dV 
~ > 0 (type I); __ > 0 (type 11). 
dX 1 dZ1 
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I46 M .  A. FORTES 

Note, however, that we have considered only perturbations away from equil- 
ibrium for which the shape of the fluid interface conforms to the equation 
of Laplace. It is unlikely that other perturbations will increase the Helmholtz 
energy. 

The above criterion for stability is the same that was found in a study4 of 
gravity free systems with axial and cylindrical symmetry, for any size of the 
liquid surface. We shall then use conditions [56] and Eqs [22] and [23] to 
discuss, in the following section, contact angle hysteresis in the system under 
consideration, for any value of R, . 

4 MEASURED CONTACT ANGLES ON ROUGH SURFACES 

If the cylindrical solid surface is rough, we define a mean surface with slope 
1 at each point. The slope relative to the mean surface is A,, such that 

A = x + A,. (57) 
Eventually, k90" has to be added to obtain A in the required interval. The 
average value of A, is of course zero. 

Contact angles are measured relative to the mean surface, when the com- 
mon optical methods are used. Therefore, if e* is the contact angle measured 
at any position (or macroscopic contact angle, in the nomenclature of 
some authors, e.g. Ref. 8), we have 

e* = d1 + A, = o, - A, + K = e, - A , ~ .  ( 5 8 )  

As the line of contact is forced to move on the solid surface, positions will be 
reached, at the limit of stable regions, where the line has to jump to a neigh- 
bouring position. The critical positions are those where V reaches a maximum 
(in advancing) or a minimum (in receding). If A. and A, are the corresponding 
slopes, A,, the measured contact angles at those positions are 

Suppose that the solid surface has a periodic rugosity, and to simplify assume 
first that within a period there is only one critical position for advancing and 
another for receding. The path of the triple line and the corresponding vari- 
ation of I/ with position, X or 2, will be of the type shown in Figure 2a. The 
angles given by Eq. 59 are the extreme values that can be measured. But it 
is expected that they will be close to the angles actually measured, provided 
the wavelength of the rugosity is small compared to the dimensions of the 
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v l  

V V 

FIGURE 2 Examples of variation of volume, V, with position ( X  or Z )  of the triple line. The 
arrows indicate the paths for an advancing triple line. (a)-(c) refer to periodic rough surfaces 
(period marked by dashed lines); (d) refers to a random roughness. 

meniscus. In fact, the jumps will then take place to positions which are near 
to the next maximum or minimum in volume. The advancing path shown 
in Figure 2a illustrates this. 

If n stable regions occur within a period, there will be, within a period, 
n critical positions both for advancing and for receding. The path of the triple 
line can be of various types, as shown in Figure 2b, c for n = 2. When the 
volume increases from one maximum to the next as X(or 2) increases, the 
path is as shown in Figure 2b and the measured advancing angle can be 
either one corresponding to the maxima. In the other case (Figure 2c), the 
triple line only “visits” one of the stable regions and the advancing angle has 
a well defined value. Finally, if the roughness is random (Figure 2d) it is 
apparent that the measured angles will be controlled by the more prominent 
maxima and minima. 

The critical angles, lo and A,, can only be evaluated if the surface profile 
is known. In what follows, a sinusoidal profile4%’ will be used to illustrate 
the application of the equations derived above. However, some general 
predictions can be made in limiting cases, and these will be discussed first. 
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148 M. A. FORTES 

4a Large liquid surfaces 

If the lateral dimension (width) of the liquid surface is very large compared 
to a, we take R ,  + co and the stability condition [56] becomes (Eqs 43 
and 54) 

tg I ,  - P c o s ( y )  > 0 

1 -  k ctg I ,  c o s ( v )  > 0 

Both condtions are equivalent to 

which shows that, in general, stability is favoured by large values of sin I ,  
and large negative radii of curvature. 

We first consider two limiting cases, for large menisci. 

1) alp + 0. This corresponds to a very heavy liquid or to an almost smooth 
surface. In type I1 surfaces, stability occurs for any position of the triple 
line; there is no hysteresis, and the line of contact does not jump. In this 
case, we take for the measured contact angle the average value, which is 
6,. In type I surfaces, the line of contact can only be at regions of positive 
slope. Jumps will occur from A, = 0 positions, so that no hysteresis is ex- 
pected: @,* = 6: = 6,. 

2) u/p + m. Common systems probably fall in this category. Stable 
positions are in the regions of negative p, that is, in protruding regions. 
The critical positions are those where curvature changes sign, i.e., at the 
inflection points of the profile, where the slope is maximum or minimum 
( I ,  and I ,  respectively). From Eqs 59 we conclude that the advancing angle 
is larger than the receding angle, the difference being Ar - An (for type I 
surfaces, I ,  > 0 and I n  < 0; and for type I1 surfaces, Ir  > 90" and In < 90"). 
Since the critical Ia  and IF do not depend on the average slope (Eq. 57), 
it is concluded that no effect of inclination on the messured contact angles 
is expected in this limiting case. 

For intermediate values of alp, the critical positions have to be calculated, 
from Eqs 60 and 61, for each type of profile. This has been done for a hori- 
zontal sinusoidal profile (type I): 

(63) 
27cx 

z = - ACOS- 
L 
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CONTACT ANGLE HYSTERESIS 149 

and for a vertical sinusoidal profile (type 11): 

2nx x = xo - Acos- 
L 

where A is the amplitude and L the wavelength. Note that [63] and [64] 
define the same solid surface. 

Figures 3 and 4 show the stable regions (heavier) in these profiles for 
various combinations of A/L,  a/L and 8,. All profiles are drawn between two 
inflection points. The maximum slope Al for A / L  = 0.1 is 32.142" and for 
AIL = 1 it is 80.957". Table 1 gives the slopes Aa and A,. at the critical points 
and the corresponding values of Q$ and 0:. The value of H: is taken zero when 
Eq. 59 gives a negative value; and H Z  is taken as 180" if Eq. 59 gives a value 
larger than 180". Except in one case, there is just one stable region per period. 

0.1 

e, = 30' 

FIGURE 3 Stable regions of the triple line of large menisci in contact with horizontal solid 
surfaces with sinusoidal profile of wavelength L and amplitude A,  for various values of 0, and 
of the capillary constant, a. The extreme points of each profile are inflection points. The insert 
shows the position of the symmetry plane. 
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E = l O  
L 

A 
L 

0.1 0, = 30' 10 0.1 s 1" 

0, = P O 0  10 

FIGURE 4 The same as in Figure 3, but for a vertical solid surface. 

The exception is for the type I profile with AIL = 1 and a/L  = 10,0, = 120", 
when a second region is found as shown in Figure 3. However, > 180" 
in this region, so that it  is probably not used by the triple line. 

The results obtained confirm the predictions made in the limiting cases 
previously discussed. Further conclusions are as follows (see Table I). 

1) For fixed AIL (same rugosity) the amount of hysteresis, defined as 
(8: - 8,*), increases as a/L increases; 0: increases and 8: decreases. 

2) For fixed a/L, hysteresis increases as AIL increases; 8: increases and 
8: decreases. 

3) For horizontal surfaces I I,) < I ,  ; for vertical surfaces I ,  < 180" - A, 
if 0, = 30°, but 1, > 180" - Lr if 0, = 120". 

4) Hysteresis is affected by 8,, with (8; - 8 3  apparently decreasing as 
8, increases. 

5 )  There is an effect of inclination on the measured contact angles. For 
example, for 0, = 30", the advancing angle is larger for a horizontal surface 
than for a vertical surface when AIL = 0.1, but the reverse is found for 
AIL = 1. For 8, = 120" the differences that occur between horizontal and 
vertical positions are not simple to describe. 
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TABLE I 

Critical slopes and measured contact angles (degrees) for sinusoidally grooved surfaces. 

Horizontal Vertical 

A a  
- -  
L L  e, = 30' B, = 30' 

0.1 10 
0.1 1 
0.1 0.5 
0.1 0.2 
0.1 0.1 

1 10 
1 1 
1 0.1 

2, 
- 32.133 
-31.37 

-23.20 
- 16.44 

- 29.45 

- 79.00 
- 70.05 
-50.17 

1, 0: 0: I ,  
32.135 62.133 0 57.87 
31.57 61.37 0 59.60 
30.04 59.45 0 64.97 
24.32 53.20 5.68 - 

17.44 46.44 12.56 - 

79.58 109.00 0 9.08 
71.82 100.05 0 11.57 
52.57 80.17 0 31.59 

4 
122.11 
119.02 
115.58 

170.65 
163.92 
140.17 

0: 0: 
62.13 0 
60.40 0.98 
55.03 8.42 
30 30 
30 30 

110.9 0 
108.4 0 
88.41 0 

8, = 120" e, = 1200 

0.1 10 -32.10 32.13 152.10 87.87 57.87 122.16 152.13 87.84 
0.1 1 -27.23 31.00 147.23 89.00 59.96 120.56 150.04 89.44 
0.1 0.1 -9.24 11.56 129.24 108.44 - 

I 10 -58.41 79.59 178.41 40.41 9.18 170.90 180 39.10 

- 120 120 

A-amplitude; L-wavelength; a-capillary constant 

4b Small liquid surfaces 

The determination of the stable positions for a meniscus of arbitrary size 
is too complicated and has not been undertaken. Instead we shall analyse 
the other limit of size, that of narrow menisci with the dimension x, small 
compared to the capillary constant, a. The stability condition is now, 
from Eq. 22 

(65) 
1 d v  cos4, + -, 1 o. - - _ _ _ ~  
adX,  pcosA, ro 

For a horizontal sinusoidal plate (Eq. 63), the region of stability increases as 
ro > 0 decreases and, at least for 8, < 90°, is located in the valleys of the solid 
surface. Examples of calculated stable regions are shown in Figure 5 for 
ro = 10n (a = 0.27 cm for the water-air interface in Earth's gravitational 
field) and L = 0.01~. In some cases, two stable regions develop, but in 
general the protruding areas are avoided. 

When only one stable region occurs, it is found that 0: < 0:. The inversion 
of the measured contact angles may even occur for BC = 120°, when two 
stable regions appear, but it is not possible to predict the path of the triple 
line in this case. 
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FIGURE 5 
sinusoidal surfaces of wavelength L and amplitude A .  In all cases a / L  = 100 ( ro /L  = 10). 

Stable regions of the triple line for small menisci with a/r, = 10, on horizontal 

0" 

0: 

0; 
I \  

,- 
, <  .__- 

-- 

a 
'0 ' 0  

FIGURE 6 Effect of dimensions on measured contact angles (see text). 

In the intermediate range of sizes, the variation of 0: and %,* with meniscus 
dimensions is not simple to predict. Figure 6 shows two possibilities. The 
curves in Figure 6b confirm to the experimental observation of a decrease in 
both 0; and %: as the drop size decreases, but this requires a minimum in 
the %,* curve. Only a complete calculation of the measured contact angles as 
a function of size, using Eq. 22, could confirm the occurrence of a minimum 
in 0:. It certainly does not occur if alp + co, because, for large drops, the 
angles 0: and %,* will have the extreme values of O*. Figure 6a is then appro- 
priate to this case. 

5 MEASURED CONTACT ANGLES ON HETEROGENEOUS 
SURFACES 

We consider only a planar smooth surface placed horizontally ( z  = 0) and 
with a heterogeneity described by a fluctuating function 8, ( X ) .  Equation 22 
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with k replaced by -dO,/dX and A, = 0 is the basic equation to discuss 
contact angle hysteresis in this case. 

For very large menisci, the stable positions are those for which dO,/dX 
is positive, leading to a normal contact angle hysteresis, not affected by 
gravity. The advancing angle is near to the maximum 8, and the receding 
angle near to the minimum 8,. As the drop size decreases, e,* must decrease 
and 0: increase, as in Figure 6a. Stability is now favoured by negative values 
of dO,/dX cos 41. For 4 > 71/2 (acute contact angles) an inversion is expected 
as the drop size gets very small. 

6 CONCLUSIONS 

The model system analysed in this paper is certainly far from actual systems, 
particularly in what concerns the type of rugosity and heterogeneity of the 
solid surface. However, the conclusions drawn can probably be applied, at 
least qualitatively, to more realistic systems. Attempts at treating such 
systems (e.g. 3) meet with enormous difficulties, because even the equilibrium 
shape of the fluid interface can then only be determined by approximate 
methods, excluding the possibility of treating the stability problem and 
therefore contact angle hysteresis. 

The relation that we have found between stability and change of the triple 
line position as the volume changes, is likely to be valid for all systems, 
although a proof of its general validity seems hard to elaborate. 

For large drops and large menisci, the stable positions of the triple line 
are in the protruding areas of the solid surface, particularly those of large 
curvature, with gravity favouring the ascendent sides of the protrusions. 
This explains contact angle hysteresis and indicates that it should be reduced 
by gravitational fields. This effect of gravity occurs because the stable regions, 
and therefore the critical positions for the triple line, are altered; it is not an 
effect on Young’s contact angle, which we assumed to be independent of 
gravity.6 Heterogeneity alone does not give rise to a gravity effect. It is 
also interesting to note that contact angles may differ for sessile and pendent 
drops of the same size and on the same surface, as a comparison of Eqs 22 
and 24 indicates. 

For small drops or small menisci, there is a tendency to avoid the protrud- 
ing regions of the solid surface, and this may in some cases originate an in- 
version in hysteresis, with the advancing angle smaller than the receding 
angle. Heterogeneity leads to a similar variation of the two contact angles 
with drop size. However, this variation can hardly explain the experimentally 
observed decrease of both angles as the size decreases. 
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The effect of inclination of the solid surface was not studied in detail. 
Although it may be noticeable in some cases (see Table I), for the common 
systems used in contact angle measurement (large liqud volumes, large 
values of alp), the effect is probably a minor one. 

Finally, it should be noted that the distinction between roughness and 
heterogeneity, which is probably artificial,’ particularly if high curvature 
regions (e.g. edges) occur in the solid surface, could in principle be avoided 
by considering, through Eq. 27, an equivalent curvature at each point which 
incorporates the effect of heterogeneity. 
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